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Abstract In this paper, we propose a multiobjective differ-
ential evolution (MODE)-based feature selection and ensem-
ble learning approaches for entity extraction in biomed-
ical texts. The first step of the algorithm concerns with the
problem of automatic feature selection in a machine learn-
ing framework, namely conditional random field. The final
Pareto optimal front which is obtained as an output of the
feature selection module contains a set of solutions, each of
which represents a particular feature representation. In the
second step of our algorithm, we combine a subset of these
classifiers using a MODE-based ensemble technique. Our
experiments on three benchmark datasets namely GENIA,
GENETAG andAIMed show the F-measure values of 76.75,
94.15 and 91.91%, respectively. Comparisons with the exist-
ing systems show that our proposed algorithm achieves the
performance levels which are at par with the state of the
art. These results also exhibit that our method is general in
nature and because of this it performs well across the several
domain of datasets. The key contribution of this work is the
development of MODE-based generalized feature selection
and ensemble learning techniques with the aim of extracting
entities from the biomedical texts of several domains.
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1 Introduction

Entity extraction in the biomedical domain aims to iden-
tify and classify each word of a document into some prede-
fined target categories such as protein, RNA, DNA, cell_type
and cell_line. Entity extraction is an important compo-
nent in many text mining applications including question–
answering, information extraction, information retrieval and
automatic summarization. Accurate prediction of biomed-
ical entities is crucial for its integration in a text mining sys-
tem,which is deployed to solve somepractical application(s).
Similar to the other domains, biomedical names also belong
to the open class of expressions, i.e., there is an infinite vari-
ety and new expressions are constantly being invented. But,
compared to the traditional news-wire domain, identification
and classification of biomedical entities aremore challenging
because of the following facts: names are, in general, very
long and complex and hence their boundary identification is
more difficult; names contain many nested and compounded
entities with symbols, punctuation marks, etc., and there-
fore require more sophisticated features for their accurate
classification. Another crucial issue is to develop a domain-
independent system that is general enough to handle entity
extraction for more than one domain. In biomedical domain
there exists several benchmark corpora that were developed
following different annotation guidelines. Therefore the sys-
tem developed for a particular domain of dataset often fails
to perform reasonably on the other domain.

In this paper, we develop amultiobjective differential evo-
lution (MODE)-based algorithm that performs feature selec-
tion and ensemble learning in sequence. In the first step, we
determine themost relevant features for the target task within
the framework of a supervised machine learning algorithm.
Feature selection is the technique of selecting a subset of rel-
evant features for building a robust learning model. As we
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already mentioned, our feature selection algorithm is based
on the concept of multiobjective optimization (MOO) that
makes use of differential evolution (DE) (Storn and Price
1997) as an underlying optimization technique. DE (Storn
and Price 1997) is a parallel direct search method which per-
forms search in complex, large and multi-modal landscapes,
andprovides near-optimal solutions for anoptimizationprob-
lem. Feature selection is traditionally framed as a single
objective optimization (SOO) problem. In SOO, we focus
on optimizing only one objective function at a time. In con-
trast, MOO concerns with the optimization of more than one
objective function simultaneously. For MODE-based feature
selection, we optimize two functions as follows: minimize
the number of features and maximize the F-measure value.
Features are encoded in the form of a chromosome. Tradi-
tional crossover and mutation operators are used. But a new
selection operator is developed to deal with the MODE. The
final output of feature selection is a Pareto optimal front that
contains a set of potential solutions, each of which repre-
sents a different classifier. We perform feature selection for a
well-knownmachine learning algorithm, namely conditional
randomfield (CRF) (Lafferty et al. 2001). The algorithm pro-
posed here is general enough to be applicable for any other
supervised machine learning algorithm.

The optimization algorithms have been successfully
applied for solving problems from different fields like man-
ufacturing industry, swarm intelligence and fuzzy control
system. In Victor et al. (2005), authors have surveyed the
recently developed evolutionary algorithms for solving some
real-world problems related to manufacturing industry. In
Preitl and Precup (2006), authors have dealt with both theo-
retical and application aspects concerning iterative feedback
tuning algorithms in the design of a class of fuzzy control
systems. In Heidl et al. (2013), authors have described some
machine learning based analysis and design methods which
were applied for studying gender differences in visual inspec-
tion decision making. In El-Hefnawy (2014), authors have
suggested a modified particle swarm optimizer for solving
fuzzy bi-level single and multiobjective problems.

Literature shows how several algorithms for feature selec-
tion were developed using the search capability of genetic
algorithm (GA) (Goldberg 1989). These algorithms are
mostly applied for solving the problems related to pattern
classification and knowledge discovery.GA (Goldberg 1989)
is a randomized search and optimization technique guided
by the principles of evolution and genetics, having a large
amount of implicit parallelism. GAs are adaptive compu-
tational procedures modeled on the mechanics of natural
genetic systems. They express their abilities by efficiently
exploiting the historical information to speculate on new
offsprings with expected improved performance (Goldberg
1989). In Yang and Honavar (1998), a GA-based feature
selection technique was developed to select the appropri-

ate subset of features from the different data sets. The fea-
tures represent financial cost, diagnostic value, risks, etc. In
Oliveira et al. (2001),GA is used to select the appropriate sub-
set of features for handwritten digit recognition. The feature
vector is consisting of a mixture of concavity and contour-
based features. The paper (Dash and Liu 1997) surveys the
works done in the domain of feature selection starting from
the early 1970s. In this paper, different types of evaluation
functionswere compared based on the different properties. In
Guyon and Elisseeff (2003), variables and features are iden-
tified from the datasets with tens, hundreds or thousands of
available variables. The algorithm is applied in the domains
of text processing of internet documents, gene expression
array analysis, and combinatorial chemistry.

We generate CRF-based classifiers from the features rep-
resented in the chromosomes of the solutions obtained in the
first step. Some of the important classifiers are selected and
combined using a MODE-based classifier ensemble tech-
nique. The main idea behind classifier ensemble is that
ensembles are often much more accurate than the individual
classifiers thatmake themup.An important issue in ensemble
learning is to investigate the most suitable way to combine
the decisions of the classifiers. There are two conventional
methods for combining the classifiers (Dasarathy and Sheela
1979; Dietterich 2000): majority voting and weighted vot-
ing. While in majority voting same weights are assigned to
all the classifiers, in weighted voting classifiers are combined
using some weights. Depending upon how the weights are
determined inweighted voting, final decision of the ensemble
could vary, and that, in turn, affects the overall classification
performance. In reality, all the participant classifiers may
not be equally efficient to detect all the target classes. For
example, a classifier may be good at detecting DNA while
others may be good at detecting RNA. Thus, while combin-
ing the classifiers using weighted voting, weights of voting
should vary among the different classes for a classifier. Here,
we develop aMODE-based technique that can automatically
determine the appropriate weights of voting for each class in
any classifier.

In recent past, there have been some efforts (Ekbal and
Saha 2011b, 2012) for building evolutionary algorithms
based on feature selection and ensemble learning techniques,
especially focusing on text processing domains. A SOO-
based classifier ensemble technique was proposed in Ekbal
and Saha (2011b). This was evaluated for named entity (NE)
extraction from multiple natural language texts. In addition,
a GA-based feature selection technique was also developed.
In Ekbal and Saha (2010a), a GA-based classifier ensem-
ble selection technique was developed. This approach deter-
mines only a subset of classifiers that can form the final clas-
sifier ensemble.

In Ekbal and Saha (2012), a multiobjective GA-based
ensemble techniquewasdeveloped.Alongwith feature selec-
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tion, exhaustive evaluation was also carried out. In Ekbal and
Saha (2011a), a simulated annealing-based MOO technique,
AMOSA Bandyopadhyay et al. (2008) was used to develop
an ensemble method. Several different versions of the objec-
tive functions were exploited. In Sikdar et al. (2012), a DE-
based feature selection and classifier ensemble techniquewas
developed. This algorithm was based on SOO. The present
work deals with MODE, which has a different perspective
compared to GA or simulated annealing.

We perform experiments on three existing benchmark
datasets namely JNLPBA 2004 shared task,1 GENETAG2

and AIMed.3 Evaluation results show the F-measure values
of 76.75, 94.15 and 91.91% for the JNLPBA,GENETAGand
AIMed datasets, respectively. Comparisons with the existing
systems show that our proposed technique achieves perfor-
mance at par with the existing state-of-the-art systems.

Below, we highlight how the current research differs with
the prior work reported in Sikdar et al. (2012):

– In Sikdar et al. (2012), we tackled the problem of appro-
priate feature selection and ensemble learning using DE-
based SOO. But in the current paper, the automatic fea-
ture and classifier ensemble selection problem is mod-
eled as a MOO problem. As an optimization technique
we use DE. SOO has a different perspective compared to
MOO. In SOO only one function is optimized at a time,
but in MOOmultiple functions are optimized simultane-
ously. Another advantage of MOO is that it produces a
set of trade-off solutions, and depending on requirement
of the user, a single solution may be selected. In the cur-
rent paper, at first we extend the single objective DE to
solve the MOO problem. Thereafter, it is used to solve
the problem of automatic feature selection and classi-
fier ensemble. Existing literature shows that, in general,
MOO-based techniques aremore effective than the SOO-
based techniques for solving the difficult optimization
problems. In the current paper, we also show the effec-
tiveness of MOO for the target task. Thus, the proposed
technique is substantially different from the approach
proposed in Sikdar et al. (2012).

– The algorithm proposed in Sikdar et al. (2012) was
applied for evaluating NE extraction problem in three
Indian languages, namelyBengali, Hindi andTelugu. But
in the current paper we have evaluated the algorithms
for biomedical entity extraction from three benchmark
datasets, namely JNLPBA 2004 shared task,4 GENE-

1 http://research.nii.ac.jp/~collier/workshops/JNLPBA04st.htm.
2 ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/GENEATG.tar.gz.
3 ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/interactions.tar.gz.
4 http://research.nii.ac.jp/~collier/workshops/JNLPBA04st.htm.

TAG5 and AIMed.6 Entity extraction in biomedical texts
is inherently more challenging compared to the other tra-
ditional domains such as newswire.

– In Sikdar et al. (2012), we used less number of features
as compared to our current method. The task handled in
Sikdar et al. (2012)was to extract named entities from the
Indian language texts and therefore made use of a feature
set that is much smaller compared to what we used in our
current work.

2 Overview of multiobjective differential evolution

Differential evolution Storn and Price (1997) is a paral-
lel direct search method which performs search in com-
plex, large and multi-modal landscapes, and in general pro-
vides near-optimal solutions for an optimization problem.
In DE, the parameters of the search space are encoded
in the form of strings called chromosomes. A collection
of such strings is called a population denoted by N P . It
is a collection of |N P| D-dimensional parameter vectors
Xi,G = [x1,i,G , x2,i,G , . . . , xD,i,G ], i = 1, 2, . . . , N P for
each generation G. The value of D represents the number
of real parameters on which optimization or fitness func-
tion depends. The value of N P does not change during the
optimization process. The initial vector population is cho-
sen randomly which represents different points in the search
space and should cover the entire parameter space. ForMOO,
more than one objective or fitness functions are associated
with each string. These represent the degrees of goodness
of the string. Differential evolution generates new parame-
ter vector by adding the weighted difference between two
population vectors to a third vector. This operation is called
mutation. The mutated vector’s parameters are then mixed
with the parameters of another predetermined vector, the tar-
get vector, to yield the so-called trial vector. Parameter mix-
ing is often referred to as crossover. For selection, these NP
number of trial vectors are merged to the current population.
Hence the total number of solutions becomes 2 × NP. The
solutions are ranked based on the concept of domination and
non-domination. In the next generation we have to select NP
number of chromosomes from the entire set of solutions. The
process starts to include the solutions from the first rank. If it
exceedsNPwe sort the solutions using the crowding distance
sorting algorithm. Thereafter, we keep on including the solu-
tions until it becomes equal to NP. The rest of the solutions
of the first rank are not considered thereafter. If the number
of solutions of the first rank is less than NP, we select the
solutions from the subsequent ranks until the total number
reaches our desired count, i.e., NP. Following are the steps

5 ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/GENEATG.tar.gz.
6 ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/interactions.tar.gz.
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for computing the crowding distance di of each point i in the
non-dominated front I (Deb et al. 2002)

– For i = 1, . . . , I , initialize di = 0.
– For each objective function fk, k = 1, . . . , K , do the

following:

– Sort the set I according to fk in ascending order.
– Set d1 = d|I | = ∞.
– For j = 2 to (|I | − 1), set d j = d j + ( fk( j+1) −

fk( j−1)).

In the proposed multiobjective DE, a binary tournament
selection operator which was defined based on the crowd-
ing distance operator is used. If two solutions a and b are
compared during a tournament, then solution a wins the tour-
nament if either:

– The rank of a is better (less) than the rank of b, i.e., a and
b belong to two different non-dominated fronts, or

– The ranks of a and b are the same (i.e., they belong to the
same non-dominated front) and a has higher crowding
distance than b. This means that, if two solutions belong
to the same non-dominated front, the solution situated in
the lesser crowded region is selected.

The process of selection, crossover and mutation contin-
ues for a fixed number of generations or till a termination
condition is satisfied. The pseudocode of the multiobjective
differential evolution is shown in Algorithm 1.

3 Method for feature selection

In this section, we first formulate the problem of relevant
feature selection within the framework of multiobjective dif-
ferential evolution, and then present the proposed approach.

3.1 Problem formulation for feature selection

Suppose, there are D number of available features, and these
are denoted by F1, . . . , FD . Let, A = {Fi : i = 1; D}. The
feature selection problem is then stated as follows:

Determine the appropriate subset of features A′ ⊆ A
such that the classifier trained using these features should
have optimized some metrics. In our proposed MOO-based
DE setting, we optimize two objective functions namely (1)
minimize the number of features and (2) maximize the F-
measure value. Please note that we determine the optimal
feature combinations based on the development set, and later
on use these to perform blind evaluation on the test data.

3.2 Multiobjective DE-based feature selection approach

The basic steps of the multiobjective differential evolution
technique are as follows.

Algorithm 1 Pseudocode for Multiobjective Differential
Evolution
1: G=0
2: Create a random initial population Xi,G ,∀i, i = 1, . . . , N P
3: for G=1 to GMax do
4: for i=1 to NP do
5: Ui,G+1 = Xi,G
6: end for
7: for i=1 to NP do
8: Select randomly three different chromosomes r1, r2 and r3
9: irand = randint(1,D)/*generate a random integer value from 1 to

D */
10: for j=1 to D do
11: rand j = randfloat(0,1)/*generate a random real value belongs

to [0,1]*/
12: if rand j < CR or j=irand then
13: uN P+i, j,G+1 = xr3, j,G + F × (xr1, j,G − xr2, j,G)

14: else
15: uN P+i, j,G+1 = xi, j,G
16: end if
17: end for
18: end for
19: /* Evaluate the value of K objective/fitness functions */
20: Evaluate fk(Ui,G+1) ∀i, i = 1, . . . , 2 × N P and ∀k, k =

1, . . . , K
21: n = 0
22: j = 1
23: while n < N P do
24: Select all the non-dominated solutions Vp,G+1 of rank j from

Ui,G+1,∀i, i = 1, . . . , 2 × N P and ∀p, p = 1, . . . , I where
1 ≤ I ≤ 2 × N P

25: if n + k ≤ N P then
26: for i=n+1 to n+k do
27: Xi,G+1 = Vi−n,G+1
28: end for
29: else
30: Apply crowding distance sorting to Vp,G+1
31: for i=n+1 to NP do
32: Xi,G+1 = Vi−n,G+1
33: end for
34: end if
35: n=n+k
36: j=j+1
37: end while
38: end for

Fig. 1 Problem encoding for feature selection

Chromosome representation and population initialization
In multiobjective DE, features are encoded in the chromo-
somes. If we have D features then we require a vector of
length D for its representation.

Initially, all the chromosomes are randomly initialized to
either 1 or 0. A value of 1 in the i th position indicates that the
respective feature participates in constructing the classifier.
Else, the value of 0 indicates that the corresponding feature
does not participate in constructing the classifier. The chro-
mosome representation and initialization are shown in Fig. 1.
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Fig. 2 Multiobjective
DE-based mutation process

In this Fig. 1, the value of D is 15 and each gene value of the
chromosome is either ‘1’ or ‘0’ that represents the presence
or absence of the corresponding feature.

Fitness computation
For the fitness computation, if there are D features present in
the chromosome then the classifier is trained with only these
features. The trained model is evaluated on the development
set.7 We compute the F-measure value for the development
set. Our aim is to select theminimal set of features whichwill
maximize the F-measure value. We optimized the following
functions: (1) minimize the number of features present in the
chromosome, and (2) maximize the F-measure value.

Mutation
In multiobjective DE, for each target vector Xi,G ; i =
1, 2, 3, . . . , N P , a mutant vector is generated according to

Vi,G+1 = xr1,G + F × (xr2,G − xr3,G), (1)

where r1, r2, r3 are mutually different random indices and
belong to {1, 2, . . . , N P}, G is the generation number and
F > 0. The values of randomly chosen integers r1, r2 and
r3 are different from the running current index i , so that N P
must have value equal to at least four. The value of F is a
real and constant factor and we set the value of F equals
to 0.5, a parameter in the range of [0, 1] which controls the
amplification of the differential variation (xr2,G−xr3,G). The
Vi,G+1 is termed as the mutated vector. If it is found that the
value of each parameter of the mutant vector Vi,G+1 ≥ 0.5
then we set the parameter value to 1, otherwise the parameter
value is set to 0.A collection of N P number ofmutant vectors
is called the mutant population. The mutation operator is
described in Fig. 2.

7 A part of each training set is used as the development set.

Fig. 3 Multiobjective DE-based crossover operator

Crossover or recombination
Theparametermixing of target vector Xi,G andmutant vector
Vi,G+1 is called crossover. Crossover is needed to increase
the diversity of mutant vector. To this end, the trial vector:

Ui,G+1 = (u1,i,G+1, u2,i,G+1, . . . , uD,i,G+1) (2)

is generated, where

u j,i,G+1 = v j,i,G+1 if (rand j ≤ CR) or j = irand (3)

= x j,i,G if (rand j > CR) and j �= irand (4)

for j = 1, 2, . . . , D, In Eq. 3, rand j is an uniform random
number of the j th evaluation which belongs to [0, 1]. CR
is the crossover constant belonging to [0, 1] which has to
be determined by the user. Here, CR value is 0.5. irand is
a randomly chosen index, belonging to {1, 2, . . . , D} which
ensures that the parameters of Ui,G+1 receive at least one
parameter from Vi,G+1. At the end of this process, we will
get the trial population. The crossover operator is shown in
Fig. 3.
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Fig. 4 Representation of
dominated and non-dominated
solutions

Fig. 5 Selection process

Fig. 6 Problem encoding for
DE-based classifier ensemble

Selection
To decide N P number of best chromosomes for the next
generation G + 1, trial population is merged to the current
population. Thus there are 2×NP chromosomes. These 2×
NP solutions are ranked based on the concept of domination
and non-domination relations in the objective function space.
The dominated and non-dominated relations are shown in
Fig. 4. In this figure, non-dominated solutions are represented
in the Pareto optimal surface. Thereafter, these solutions in
the descending (rank 1 is considered to be at the top) order are
added to the population of the next generation until the total
number of solutions becomes equal to N P . If the number
of solutions of a particular rank is more than N P then we

apply the crowding distance sorting algorithm, and discard
the excess solutions. At the end of this process, best N P
number of chromosomes are selected for the next-generation
population. The entire selection process is shown in Fig. 5.

Termination condition
The processes ofmutation, crossover (or, recombination), fit-
ness computation and selection are executed for aGMax num-
ber of generations. Finally, we obtain a set of non-dominated
solutions on the final Pareto optimal front. None of these
solutions is better compared to the other, and each of these
represents a set of optimal feature combinations. We con-
struct multiple classifiers using these feature combinations.
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4 Method for classifier ensemble

In the output of the first step of the algorithm, we obtain a
set of solutions, each of which is equally important from the
algorithmic point of view. We generate different classifiers
using the feature combinations as represented in each of these
candidate solutions. To combine these solutions, we propose
an ensemble technique based on multiobjective DE.

4.1 Problem formulation

Theweighted vote-based classifier ensemble problem (Ekbal
and Saha 2010b) is stated below. Suppose, the N number of
available classifiers be denoted by C1, . . . ,CN . Let, A =
{Cn : n = 1; N } and there are M classes. The weighted vote-
based classifier ensemble problem is then stated as follows:

Determine the voting weights V for each classifier that
optimizes some function f (V ). The V denotes a real array
of size N × M . V (n,m) is the weight of vote of the nth clas-
sifier for the mth class. The class for which the classifier is
more confident receives more weight; whereas the class for
which the classifier is less confident is assigned less weight.
The weights computed in such a way are used to combine
the outputs of the classifiers. Here, fi s are some classifica-
tion qualitymeasures of the ensemble classifier. The problem
that we solve here has, in general, three different kinds of
classification quality measures fi , namely recall, precision
and F-measure. Thus, f ∈ {recall, precision,F-measure}.

The ensemble problem under multiobjective DE is for-
mulated as follows. For each classifier, determine the voting
weights V per classifier such that, maximize [ f (V )], where
f ∈ {recall, precision,F-measure}. We optimize f = recall
and precision as the two objective functions.

4.2 Steps of the proposed approach

The various steps of the proposed multiobjective DE algo-
rithm are given below:

4.2.1 Problem representation

Chromosome representation and population initialization
Let us assume that the number of available classifiers and
classes be N and M , respectively. The problem can be repre-
sented using a chromosome of length equal to D = N × M .
Each chromosome encodes the voting weights for possible
M classes in each classifier.

As an example, in Fig. 6, a chromosome is represented
with real encoding. We use real encoding, and the entries of
each chromosome are randomly initialized to a real value (r)
between 0 and 1. Here, r = rand()

RAND_MAX+1 . If the population
size is N P then all the N P number of chromosomes of this
population are initialized in the above way. Here, the values

of N and M are 3 and 4, respectively. So, total 3 × 4 = 12
votes are possible. The chromosome represents the following
ensemble:

Weights of votes for four different classes for classifier 1
are 0.08, 0.52, 0.21 and 0.19, respectively. Similarly, weights
of votes for four different classes are 0.34, 0.11, 0.25 and
0.30, respectively, for classifier 2 and 0.62, 0.05, 0.17 and
0.16, respectively, for classifier 3.

Please note that for the feature selection problem, bits of
a chromosome were encoded with the binary values.

Objective functions computation
The process of computing the objective functions follows the
sequence of steps as mentioned below:

1. Suppose, N is the total number of classifiers. The clas-
sifiers’ F-measure values for the development set be
denoted by Fn, n = 1, . . . , N .

2. For each token of the development set, we haveM classes
from the N classifiers (each output class is taken from a
different classifier). Final output of the ensemble is deter-
mined using the voting weights of the classes of these N
classifiers. The weight for a particular class predicted by
the nth classifier is equal to Fn (i.e., F-measure value of
the nth classifier). The final weight of a particular token
t for a particular class is:

g(cm) =
∑

Fn ∗ Q(n,m),

∀n = 1 to N and op(t, n) = cm

Here, Q(n,m) corresponds to the entry of the chromo-
some that represents the nth classifier and mth class, and
op(t, n) denotes the output class provided by the classi-
fier n for the token t . Final prediction of a token depends
on the maximum combined weight that a particular class
receives. Let us consider the following example for the
explanation:

Examples
Let us consider the chromosome in Fig. 6. Suppose the
four classes be ‘protein’ (class 1), ‘DNA’ (class 2), ‘RNA’
(class 3) and ‘cell_type’ (class 4); and the F-measure
values of three classifiers be 0.75, 0.82 and 0.70, respec-
tively. Let for a token ‘c-Fos’ three classifiers produce
outputs as follows: classifier 1: ‘DNA’; classifier 2:‘pro-
tein’; classifier 3:‘protein’. Then f (‘DNA’) = 0.75 ×
0.08 = 0.06; and f (‘protein’) = 0.82 × 0.34 + 0.70 ×
0.62 = 0.7128. Thus, the final output selected for this
particular token is ‘protein’ as f (‘protein’) > f (‘DNA’).

3. Compute the recall and precision of the ensemble classi-
fier.

4. Use the precision and recall as the two objective func-
tions. These are to be maximized using the search capa-
bility of multiobjective DE.

123



3536 U. K. Sikdar et al.

Table 1 Minimum, average and maximum F-measure values (last generation)

ME JNLPBA04 GENETAG AIMed

FS CE FS CE FS CE

MinVal 74.83 75.88 92.36 93.81 90.18 91.06

MaxVal 75.26 76.75 93.77 94.15 90.56 91.91

Average 74.98 76.27 93.29 93.97 90.29 91.58

Here ‘FS’: Method for feature selection, ‘CE’: Method for classifiers ensemble, ‘F’: F-measure, ME: Method, ‘MinVal’, ‘MaxVal’ and ‘Average’:
Denote the minimum, maximum and average F-measure values, respectively, for the solutions generated on the final Pareto front

Mutation
The mutation operation is performed in the same way as we
did for feature selection. If the values of the mutant vector
parameter violate the boundary constraints then values of the
violatingmutant vector parameter are reflected back from the
violated boundary as follows:

– if(v j,i,G+1 < 0) then v j,i,G+1 = 2 × lower − v j,i,G+1;
where lower = 0;

– if(v j,i,G+1 > 1) then v j,i,G+1 = 2 × upper − v j,i,G+1;
where upper = 1;

where j = 1, 2, . . . , D and i = 1, 2, . . . , N P .

Other operators
Other operators of the multiobjective DE are similar to those
of multiobjective DE-based feature selection technique that
we described in the previous section.

Selecting final solution from the pareto optimal front
The MOO algorithm produces a set of non-dominated solu-
tions (Deb 2001) on the final Pareto optimal front. None
of these solutions dominates the other, and each provides a
way of combining the participating classifiers. Some of these
solutions are better with respect to recall; whereas some are
better with respect to precision. Though all the solutions are
equally important from the algorithmic point of view, we
often require to choose the most appropriate solution for the
target problem.

Consequently, in this paper we select the best solution
based on the F-measure value. The ensemble is evaluated on
the development set. Each solution of the Pareto front repre-
sents a weight combination along with the recall and preci-
sion values of the ensemble classifier, which is constructed
with the weight combinations as represented in the chromo-
some. We compute the F-measure scores of all the solutions
of the Pareto front. Finally, we select the particular solution
that yields the best F-measure value. Final results on the test
data are reported using the classifier ensemble corresponding
to this best solution. There can be some other approaches of
selecting a solution from the final Pareto optimal front. The
minimum,maximumand average values of the solutions gen-
erated on the final Pareto front for both the feature selection
and classifiers ensemble approaches are reported in Table 1.

5 Features

We use the following set of features for constructing various
models based on CRF. These features were generated with-
out using deep domain knowledge and/or domain-specific
resources. Hence, these features are general in nature, and
could be applied for any other related domains. Short descrip-
tions of the features are also reported in Table 2.

1. Local contexts: These are the words occurring within the
context window wi+5

i−5 = wi−5, . . . , wi+5, where wi is
the current token. This feature captures the local contex-
tual information that helps to identify the potential enti-
ties. We use DE to automatically determine the effective
local contexts within this given range.

2. Word prefix and suffix: These are the fixed-length char-
acter sequences stripped either from the leftmost or right-
most positions of the tokens. We performed experiment
with both n = 4 (i.e., eight features) and n = 3 (i.e., six
features). Exact values to these are automatically deter-
mined by our algorithm.

3. Word length: Biomedical names are, in general, longer in
length. The feature value of the current token wi is set to
true if the length of the token is greater than 5, and false
otherwise.

4. Infrequent word: We prepared a list of words that appear
less frequently than a predetermined threshold in the
training data. Depending upon the size of the dataset
the threshold could vary. Here, we consider the words
having less than 10 occurrences in the training data to
be infrequent. A feature is then defined that fires if wi

occurs in the compiled list. This is based on the observa-
tion that more frequently occurring words are rarely the
target entities.

5. Part-of-speech (PoS) information Biomedical names
belong to the noun categories. PoS information plays
a vital role for identifying the biomedical named enti-
ties (NEs). We use PoS information within the context
of previous one and next one tokens as features. This
information was extracted from the GENIA tagger.8

8 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger.
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Table 2 Description of features

Name of the feature Explanation

AllCapital All characters are in capital letters

InitialCapital Initial character is capital or not

CapitalInner Inner characters are capital or not

InitialCapitalThenMix First character is capital and next characters are mixed type (allowed characters)

AllDigit All characters are digits or not

RealNumber Word is real number or not

DigitWithSpecialCharacter Word contains special characters along with digit or not

InitialDigitThenAlpha Word with first digit character followed by alphabets or not

DigitInner Inner characters of a word are digit or not

SpecialChar Word contains the special characters or not e.g. [dash, dot, quote]

TwoBegConsecutiveWordMatch Matching two consecutive words with the beginning two tokens of a multiword name

TwoEndConsecutiveWordMatch Matching two consecutive words with the last two tokens of a multiword name

StopWordMatch Matching word with the stopword list

WordMatchFirst Matching word to the first token of a biomedical entity

WordMatchLast Matching word to the last token of biomedical entity

WordMatchVerbAfterNE Matching word with the possible list of verbs

WordMatchVerbBeforeNE Matching word with the possible list of verbs

WordNormalization Normalizing surface form of words

RomanNumber Word is a representation of a Roman number

GreekNumber Word is a Greek number representation

DigitCommaDigit Digit, digit is a substring of the word

SingleCapital Word contains only one capital letter

DigitAlphaDigit Initial letter is digit, intermediate characters are alphabets and the last character is again a digit

AlphaDigitAlpha Word starts and ends with alphabet and intermediate characters are all digits

WordPreviouslyOccured Word previously occurred in the in the training data or not

InitialSmallThenMix Word starting with small letter and then followed by mixed (capital or small) letters

InitialCapitalThenSmall Word starting with capital letter and followed by small letters

InitialAlphaThenDigit Word starting with alphabet followed by digits

InitialCapitalsThenDigit Word with a sequence of capital letters followed by digits

SemanticFeature Denotes the set of words that appear more frequently in the surrounding context of an entity

ATGCCharacters Sequence of ATGC Characters

RootWord Root of the word e.g. [’go’ is the root word of ’went’]

ContextFeatures We have considered various contexts within the window size of [−m,+n] where m and n is decided by
feature selections technique

PrefixFeature Prefixes of length up to n features characters where n is decided by feature selections technique

SuffixFeature Suffixes of length up to n features characters where n is decided by feature selections technique

InfrequentWord frequency of occurrences the word in the training data is considered

Part-of-speech Part of speech information of the current word

Chunk Chunk information of the current word

6. Chunk information: Chunk information helps to deter-
mine the boundaries of biomedical NEs. GENIA tagger
is used to get the chunk information.

7. Unknown token feature: This feature is defined based on
the concept whether the current token is present in the
training data or not. The value of this feature is set to 1
if the current token appears in the training data. During
the training phase, the feature value is set randomly.

8. Word normalization: This feature indicates how a word
shape is mapped to its equivalent class. This feature will
group similar names into the same NE class. For a given
word, each small character is replaced by ‘a’, each cap-
italized character is replaced by ‘A’ and each digit is
replaced by ‘0’. If the word contains the characters other
than the alphabet and digits, we keep it unaltered. For
example, the word ‘IL-2’ is normalized to ‘AA-0’.
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9. Head noun: It represents the major noun of a name and
describes the property of the name. For example, tran-
scription factor is the head noun for the NE NF-kappa B
transcription factor.

10. Verb trigger:Certain verbs indicate the appearance of bio-
medical names in their neighboring contexts. The token
that immediately follows a trigger word is most likely a
NE. The words appearing after these kinds of verbs are
assigned the feature values 1.

11. Word class feature: This kind of feature helps for group-
ing similar names into the same class. For a given token,
consecutive capital letters, small letters, numbers and
non-English characters are converted to “A”, “a”, “O”
and “-”, respectively. For example, the word ‘IL-2’ is
converted to ‘A–0’.

12. Informative words: Biomedical names contain many
common words that are actually not the NEs. For exam-
ple, words like and, of, normal, etc. appear inside theNEs
but these do not help for their identification. To select the
most effective words that help to recognize NEs, we cal-
culate NEweight from the training data depending upon
the frequencies of words. This indicates how better the
word is to identify and/or classify the NE. The NEweight
is calculated as follows:

NEweight(wi )

= Total no. of occurances ofwi as part of a NE

Total no. of occurances ofwi in the training data
(5)

Two parameters, namelyNEweight and number of occur-
rences are defined for selecting the effective words. The
words with frequencies less than 2 are not considered as
informative. The feature is defined in line with the prior
works reported in Saha et al. (2009).

13. Content words in surrounding contexts: We define this
feature to exploit the global contextual information from
the entire document. We consider all unigrams in con-
texts wi+5

i−5 = wi−5, . . . , wi+5 of wi (crossing sen-
tence boundaries) for the entire training data. Tokens are
converted to lower case; stopwords, numbers, punctu-
ation markers and special symbols, etc., are removed.
We define a feature vector of length 10 using the 10
most frequent content words. Given an instance, the fea-
ture corresponding to token t is set to 1 if and only
if the context wi+5

i−5 of wi contains t . Our evaluation
shows that it improves the performance for classifying the
NEs.

14. Orthographic features: Depending upon the construc-
tions of the wordforms we define a set of orthographic
features. With the alphabetic characters and digits we
define the binary-valued features that check whether the

word starts with a digit and then followed by alphabet(s);
contains only the digits; contains all the capitalized char-
acters; starts with a capital letter; starts with a capital
letter and then followed by both capitals and small let-
ters, etc. Another set of features check whether the word
contains some special characters like (‘,’,‘-’,‘.’,‘)’ and
‘(’). Many of these features help for boundary identifica-
tion ofNEs.We also implemented some features to check
whether the word contains the ATGC sequence and stop
words.

6 Datasets and experiments

We evaluate our multiobjective DE-based feature selec-
tion and ensemble approaches on three different benchmark
datasets, namely JNLPBA 2004 shared task,9 GENETAG10

and AIMed.11 The dataset of JNLPBA 2004 shared task is
an outcome of the GENIA project.12 This dataset contains
2,000 abstracts which aremanually annotatedwith 48 classes
among which 36 classes are used for the GENIA corpus. It
is further simplified by annotating with only five classes,
namely Protein, DNA, RNA, Cell_line and Cell_type Jin-
Dong et al. (2004). The test data contains 404 abstracts. To
properly denote the boundaries, the datasets were annotated
with the IOB2 format, where ‘B-XXX’ refers to the begin-
ning of amultiword/single-wordNEof type ‘XXX’, ‘I-XXX’
refers to the intermediate parts of the NE and ‘O’ refers to
the entities outside the NE.

In GENETAG training and test datasets13 gene mentions
are annotated with the ‘NEWGENE’ class and the overlap-
ping genementions are distinguished by another class ‘NEW-
GENE1’. However, we use IOB2 format (as in GENIA cor-
pus) to properly denote the boundaries of gene names, andwe
replace all the instances of ‘NEWGENE1’ classes by ‘NEW-
GENE’ tags. The training dataset contains 7,500 sentences
with 8,881 gene mentions. The average length per protein
mention is 2.1 tokens. The test dataset consists of 2,500 sen-
tenceswith 2,986 genementions. TheAIMed corpus consists
of 225 abstracts that contain 1,987 sentences with 4,075 pro-
tein mentions. The average length of protein mention is 1.3
tokens. We also pre-process this data for the IOB2 bound-
ary marking. For constructing CRF-based classifiers, we use

9 http://research.nii.ac.jp/~collier/workshops/JNLPBA04st.htm.
10 ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/GENEATG.tar.gz.
11 ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/interactions.tar.gz.
12 http://research.nii.ac.jp/~collier/workshops/JNLPBA04st.htm.
13 ftp://ftp.ncbi.nlm.nih.gov/pub/tanabe/GENEATG.tar.gz.
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CRF++: Yet Another CRF toolkit,14 a simple, customizable,
and open source implementation of CRF for segmenting or
labeling sequential data.

The DE parameters are selected after conducting a thor-
ough sensitivity analysis on the development data. The proper
choice of parameters in DE, e.g., population size, number of
generations, crossover and mutation rates, etc., is crucial to
better optimize the algorithm. The combination of different
parameter values might yield very different results. A good
setting may result in convergence of the algorithm to the best
solution within a reasonable time period. In contrast, a poor
setting of parameters might cause the algorithm to execute
for a very long time before finding a good solution. Some-
times it may so happen that we may not find a good solution
at all. Theoretical results indicating the optimal values of the
parameters in an evolutionary algorithm have been proved to
be very difficult to derive in the past.

Gmperle et al. (2002) shows that keeping the crossover
constant (CR) between 0.3 and 0.9 is a good choice. They
also mention that the initial amplification factor (F) value
should be kept equal to 0.6. In Ali et al. (2009), authors show
that DE is used to produce poor results if the value of F is
outside the range of 0.4–1.2. A good choice of F is 0.5 as
stated in Ali et al. (2009). We have selected the appropriate
values of CR and F in the range of 0.2–0.8. Another impor-
tant issue is to select the appropriate size of population,which
is, in general, related to the problem’s difficulty. For a more
difficult problem, larger population size should be used in
order to reliably achieve a good solution. It is also intuitive
to spend more resources for DE to solve the larger problems.
Thus, in general, larger population size is necessary when
the search space grows. In Brest et al. (2011), authors have
proposed to use the initial population size of 100 and then
developed an approach to reduce the population size using
self-adaptive DE algorithm.

We have also varied the generation numberGMax but con-
sidered the constant population size, N P which is set to
100. The parameter combinations of DE are optimized on
the development data. We achieved the best results when the
parameters of DE are set as follows: number of generations,
GMax = 50,CR (probability of crossover) =0.5 andF (muta-
tion factor) = 0.5. The optimized vectors generated by DE
(utilizing the development data) are finally evaluated on the
test data. We report the results with different parameter con-
figurations in Table 3 for the ensemble on the JNLPBA 2004
shared task data. Results show that the following combina-
tion attains the best result: N P = 100, CR = 0.5, F = 0.5
and GMax = 50. Results on the GENETAG and AIMed data
sets are obtained using these parameter configurations.

All the necessary files including the outputs of all CRF-
based classifiers, codes to generate features for training and

14 http://crfpp.sourceforge.net.

Table 3 DE parameters and the corresponding results on test data
(JNLPBA 2004 shared task)

No CR F GMax r p f

1 0.8 0.2 40 74.14 78.98 76.48

2 0.6 0.4 60 74.83 78.37 76.56

3 0.5 0.5 50 75.03 78.54 76.75

4 0.4 0.6 80 74.89 78.24 76.53

5 0.2 0.8 100 74.32 78.71 76.45

Here ‘No’: Experiment number, ‘CR’: Crossover constant, ‘F’: Ampli-
fication factor, ‘GMax’: Maximum generation number, ‘r ’: Recall, ‘p’:
Precision,‘ f ’: F-measure

testing, the codes for the MODE-based feature selection and
classifier ensemble are kept at this site15 for user access.

To compare with our proposed method we define the fol-
lowing baseline models:

– Baseline 1: We construct this baseline by considering
the following set of features: Context of previous two
and next two tokens along with all the features listed in
Sect. 5.

– Baseline 2: The individual classifiers, generated in the
first stage, are combined together into afinal systembased
on the majority voting. Random choice is made in case
all the outputs differ.

– Baseline 3: The classifiers selected in the first step are
combined with the help of a weighted voting approach.
In each classifier, weight is computed based on the F-
measure value of the threefold cross-validation on the
training data. The final output label is selected based on
the highest weighted vote.

6.1 Performance measures

All the classifiers are evaluated in terms of recall, precision
and F-measure metrics. Precision is the ratio of the number
of correctly found NE chunks to the number of found NE
chunks. Recall is the ratio of the number of correctly found
NE chunks to the number of true NE chunks. A chunk may
be constructed either by one or more than one token.

The value of the metric F-measure, which is the weighted
harmonicmeanof recall andprecision, is calculated as below:

Fβ = (1 + β2)(recall + precision)

β2 × precision + recall
, β = 1.

Here, JNLPBA 2004 shared task evaluation script16 is
used to measure recall, precision and F-measure. The script

15 http://www.iitp.ac.in/index.php/schools-and-centers/engineering/
computer-science-a-engineering/people/faculty/dr-sriparna-saha.
html.
16 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/ERtask/report.html.
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Table 4 Training time (optimal features vs. available features)

ME JNLPBA04 GENETAG AIMed

OF 920 723 78

AF 1,430 982 104

Here OF: ‘optimal features’, af: ‘available features’, me: ‘method’,
results reported in seconds

outputs three sets of F-measures according to the exact, right
and left boundary matching. In the right boundary match-
ing only right boundaries of entities are considered without
matching left boundaries and vice versa. In case of exact
match, both the left aswell as right boundaries are considered.
For evaluation with the GENETAG dataset we use the same
strictmatching criterion that was followed in theBiocreative-
II shared task evaluation script17 for the gene mention detec-
tion task. If D, N P and GMax represent the length of the
chromosome, number of chromosomes in a population and
number of generations, respectively, then the running com-
plexity of our DE-based technique is O(D × N P × GMax).

For feature selection, the training time of the algorithm
is mentioned in Table 4. Experiments were carried out on a
Linux server with 24 GB memory, Intel(R) Xean(R) CPU
E5540@2.53 GHz and the cache size of 8 MB. The running
time is dependent on the size of the training data, number of
available features, number of output labels, etc. The testing
time is very less and can be considered to be insignificant
compared to the training time.

Here, we showhowF-measure values changewith respect
to the number of generations in the proposed feature selection
and classifier ensemble techniques. The figures are shown
in Figs. 7, 8 and 9 for JNLPBA, GENETAG and AIMed
datasets, respectively. From the figures this is evident that
performance improves over the generations. The classifier
ensemble approach performs on the outputs produced by the
feature selection approach. This is the reason why it achieves
considerably better results as compared to the feature selec-
tion approach.

6.2 Analysis of results

The algorithm performs in two different steps, viz., feature
selection and ensemble learning. At first, we extract the fea-
tures mentioned in Sect. 5 to train and test the CRF classifier
for each of the datasets.

The multiobjective DE-based feature selection technique
is then applied to determine the most relevant set of features
for theCRF-based classifier.Weperform feature selection for
all the three benchmark datasets. Each of these experiments
yields a set of solutions on the final Pareto optimal front. The

17 http://www.biocreative.org/news/biocreative-ii/.

solutions represent various feature combinations. Some of
the classifiers are good with respect to recall and some are
good with respect to precision. For each domain, we select
eighteen promising classifiers. Out of these, nine are selected
based on the high recall while the rest are selected based
on the high precision values. Results of these classifiers are
shown in Tables 5, 6 and 7 for the JNLPBA, GENETAG and
AIMed datasets, respectively. In the second step, we con-
struct an ensemble by combining these classifiers. Overall
evaluation results are reported in Table 8.

For the JNLPBA2004 shared task data, proposedmultiob-
jective DE-based feature selection technique yields the over-
all recall, precision and F-measure values of 73.05, 77.62
and 75.26 %, respectively. The first baseline which is con-
structed by including all the features in CRFmodel yields the
recall, precision and F-measure values of 71.46, 75.73 and
73.53%, respectively. This is clearly an improvement of 1.73
F-measure points. The DE-based ensemble shows the over-
all recall, precision and F-measure values of 75.03, 78.54
and 76.75 %, respectively. This is an improvement of 1.49
points over the first stage, i.e., feature selection technique
only. It also demonstrates the overall performance increments
of 2.22, 1.45 and 1.38F-measure points over the first, second
and third baselines, respectively.

For GENETAG, multiobjective DE-based feature selec-
tion technique attains the recall, precision and F-measure
values of 91.34, 96.32 and 93.77 %, respectively. This is
an improvement of 5.26 points F-measure over the first
baseline. The proposed two-stage approach demonstrates the
recall, precision and F-measure values of 92.08, 96.32 and
94.15 %, respectively. Thus multiobjective DE-based two-
stage approach attains the overall performance increments
of 5.64, 2.05 and 2.42 F-measure points over the first, sec-
ond and third baselines, respectively.

For AIMed datasets the feature selection technique shows
the recall, precision and F-measure values of 89.69, 91.44
and 90.56%, respectively. Compared to the first baseline this
is an increment of 1.52 points. The MOO-based ensemble
obtains the recall, precision and F-measure values of 91.47,
92.35 and 91.91 %, respectively. Thus, the proposed two-
stage approach shows the overall performance increments of
2.87, 1.61 and 1.52 F-measure points over the first, second
and third baselines, respectively.

It is evident from the experimental results that all the base-
line models achieve lower performance compared to the pro-
posed approach. The proposed DE-based feature selection
approach shows that with a relatively small set of effec-
tive features we can achieve reasonably good accuracy lev-
els. The MOO-based ensemble further improves the perfor-
mance. Except the first baseline we utilize some of our pro-
posed resources and/or techniques in the other two baselines.
Despite that the multiobjective DE-based ensemble seems to
perform favorably better compared to the second and third
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Fig. 7 F-measure value vs. number of generations for the JNLPBA04 dataset

Fig. 8 F-measure value vs. number of generations for the GENETAG dataset

baselines. Improvement in the ensemble is due to the fact that
rather than blindly combining the outputs we determine the
proper voting weights (i.e., near optimal) of the classes in a
classifier.

In summary, our proposed approach attains the state-
of-the-art performance levels for entity extraction in three
benchmark datasets of the biomedical domain.

Statistical analysis of variance, (ANOVA) (Anderson and
Scolve 1978), is performed to examine whether the proposed
multiobjective DE-based approach really outperforms the
best individual classifier selected after the first stage (i.e.,

after feature selection) and the three baseline ensembles. Our
proposed technique is based on DE, a heuristic-based search
and optimization technique. The final results provided byDE
largely depend on the seed value of the random variables and
values of the parameters. For ANOVA analysis, we consider
ten different runs (inmaximumof the cases results are almost
same) of DE. Thereafter, ANOVA analysis is carried out on
these outputs. Results of this analysis are shown in Tables 9,
10 and 11 for the different data sets. Results show that the dif-
ferences in mean recall, precision and F-measure values are
statistically significant as p value is less than 0.05 in each of
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Fig. 9 F-measure value vs. number of generations for the AIMed dataset

the cases. Results also reveal that DE-based technique truly
performs better than three baseline approaches and the best
individual classifier.

7 Comparison with other biomedical NE extraction
systems

In this section, we compare the performance of our proposed
system with the existing biomedical entity extraction sys-
tems that were developed using the same datasets. Please
note that we can not directly compare the performance of
our system with the others developed using different setups.
We did not make use of any deep domain knowledge and/or
external resources. In our experiment, we use only PoS and
chunk (or, phrase) as the domain-specific external resources.
Therefore, it will not be fair to compare the performance
of our system with all the available systems. However, we
present the comparative evaluation results in Table 12 not
only with the domain-independent systems but also with
the systems that incorporate deep domain knowledge and/or
external resources.

Literature shows that the best performing system on
JNLPBA2004 shared task is described byWang et al. (2008).
The system reported to have achieved the F-measure value
of 77.57 % with different learning algorithms and domain-
dependent features. GuoDong and Jian (2004) developed a
system that achieved the F-measure value of 72.55 % with
several deep domain-dependent knowledge sources. But the
F-measure value drops to 64.1 % when the system used only
PoS and chunk information as the domain knowledge. A
maximum entropy (ME)-based system reported in Park et

al. (2004) made use of several lexical knowledge sources
extracted from the Medline corpus and obtained 66.91 % F-
measure value. One of the recent works proposed on Saha et
al. (2009) achieved the F-measure value of 67.41 % without
using any deep domain knowledge.

A CRF-based system (Settles 2004) that was developed
with different features such as semantic knowledge and
orthographic features obtained the F-measure value of 70 %.
Another CRF-based system was reported in Finkel et al.
(2004) that showed the F-measure value of 70.06 % with
different features and external resources like gazetteers, sur-
rounding abstracts, web-querying and frequency counts from
theBNCcorpus.Kimet al. (2005) proposed amodel based on
CRF and ME that achieved the F-measure value of 71.19 %.
They post-processed the outputs of machine learning models
using the rule-based component.

Our proposed approach attains the average recall, preci-
sion and F-measure values of 75.03, 78.54 and 76.75 %,
respectively. This shows the state-of-the-art performance
level not only in comparison to the systems that do not
make use of any deep domain knowledge and/or exter-
nal resources, but also to many of the existing systems
that made use of deep domain-dependent knowledge and/or
resources. In many cases, baseline systems also attain the
good performance levels with respect to some other exist-
ing systems, possibly because of the rich feature set that we
implemented.

To the best of our knowledge, the best performance on
the GENETAG dataset was reported in the BioCreative-II
gene mention detection task by Ando (2007). They achieved
the overall F-measure value of 87.2 %, which is inferior to
our proposed system by significant margin. Here, the author
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Table 5 Evaluation results with various feature combinations for the CRF-based classifiers for JNLPBA04

Cl A B C D E F G H I J K L M N O P Q R S T U

C1 −2, 3 X X X X X X 4 3 X

C2 −2, 3 X X X X X X X X X 4 3 X X

C3 −2, 3 X X X X X 4 3

C4 −2, 3 X X X X X 4 4 X X X X

C5 −2, 3 X X X X X X X 4 3 X

C6 −2, 3 X X X X X X 4 3 X X

C7 −2, 3 X X X X X X X X 4 3

C8 −2, 3 X X X X X X X 4 2 X

C9 −2, 3 X X X X X X 4 3 X

C10 −2, 3 X X X X X X X 4 3 X

C11 −2, 3 X X X X X X 4 3 X

C12 −2, 3 X X X X X X 4 3 X

C13 −2, 3 X X X X X X X 4 4 X X X X

C14 −2, 3 X X X X X X X 4 3 X X X

C15 −2, 3 X X X X X X X 4 2 X

C16 −2, 3 X X X X X X 4 3 X X

C17 −2, 3 X X X X X X X 4 2

C18 −2, 3 X X X X X X X 3 4 X X X X

Cl V W x Y Z a b c d e f g h i j k l p r F

C1 X X X X X X X X X X X 0.7781 0.7278 0.7521

C2 X X X X X X X X X X X 0.7772 0.7288 0.7522

C3 X X X X X X X X X X X X 0.7762 0.7305 0.7526

C4 X X X X X X X X X 0.7746 0.7314 0.7524

C5 X X X X X X X X X X X X X 0.7764 0.7288 0.7518

C6 X X X X X X X X X X X 0.7746 0.7299 0.7516

C7 X X X X X X X X X X 0.7768 0.7277 0.7514

C8 X X X X X X X X X 0.7774 0.7264 0.7510

C9 X X X X X X X X X X 0.7766 0.7246 0.7497

C10 X X X X X X X X X X X 0.7764 0.7260 0.7504

C11 X X X X X X X X X 0.7746 0.7297 0.7515

C12 X X X X X X X X X X 0.7758 0.7261 0.7501

C13 X X X X X X X X 0.7735 0.7296 0.7509

C14 X X X X X X X X X X X 0.7741 0.7295 0.7511

C15 X X X X X X X X X X X 0.7746 0.7293 0.7513

C16 X X X X X X X X X X X X 0.7754 0.7264 0.7501

C17 X X X X X X X X X X X X 0.7739 0.7295 0.7510

C18 X X X X X X X X X 0.7735 0.7294 0.7508

Here, the following abbreviations are used: ‘A’: ContextFeatures, ‘B’: ContentWordFeature, ‘C’: InitialCapitalsThenDigit, ‘D’: InitialAlpha-
ThenDigit, ‘E’: InitialCapitalThenSmall, ‘F’: InitialSmallThenMix, ‘G’: WordPreviouslyOccured, ‘H’:InfrequentWord, ‘I’: AlphaDigitAlpha, ‘J’:
DigitAlphaDigit, ‘K’: SingleCapital, ‘L’: DigitCommaDigit, ‘M’: RomanNumber, ‘N’: GreekNumber, ‘O’: PrefixFeature, ‘P’: SuffixFeature, ‘Q’:
WordNormalization, ‘R’: WordMatchVerbBeforeNE, ‘S’: WordMatchVerbAfterNE, ‘T’: WordMatchLast, ‘U’: WordMatchFirst, ‘V’: StopWord-
Match, ‘W’: TwoEndConsecutiveWordMatch, ‘x’: TwoBegConsecutiveWordMatch,‘Y’: SpecialChar, ‘Z’: DigitInner, ‘a’: InitialDigitThenAlpha,
‘b’: DigitWithSpecialCharacter, ‘c’: RealNumber, ‘d’: AllDigit, ‘e’: InitialCapitalThenMix, ‘f’: CapitalInner, ‘g’: AllCapital, ‘h’: InitialCapital,
‘i’:ATGCCharacters, ‘j’: RootWord, ‘k’: Part-of-Spech Tag, ‘l’: Chunk Information, ‘P’, ‘C’ and ‘N’: previous, current and next tokens, ‘−i, j’:
words spanning from the i th left position to the j th right position, current token is at 0th position, ‘X’: denotes the presence of the corresponding
feature, ‘r’: recall, ‘p’: precision, ‘F’: F-measure

123



3544 U. K. Sikdar et al.

Table 6 Evaluation results with various feature combinations for the CRF-based classifiers for GENETAG

Cl A B C D E F G H I J K L M N O P Q R S T

C1 −2, 2 X X X X 3 4 X X X

C2 −3, 2 X 2 4 X X X

C3 −2, 2 X X X 2 4 X X X

C4 −4, 2 X X X X 1 4 X X

C5 −2, 2 X X X X 1 4 X X X

C6 −3, 2 X X X X X 3 4 X X

C7 −3, 2 X X 4 4 X X

C8 −2, 3 X X X X 1 4 X X

C9 −3, 2 X X X 3 4 X X

C10 −3, 2 X X X 2 4 X X X

C11 −4, 2 X X 2 4 X X X

C12 −2, 2 X X X X X 2 4 X X

C13 −2, 2 X X X X 0 4 X X

C14 −2, 2 X X X X 0 4 X

C15 −4, 2 X 4 4 X X X

C16 −2, 2 X X X 2 4 X X

C17 −3, 2 X X X 3 4 X X X

C18 −2, 2 X X X 1 4 X X

Cl U V W x Y Z a b c d e f g h i k p r F

C1 X X X X X X X X X X 0.9647 0.9115 0.9374

C2 X X X X X X 0.9676 0.8903 0.9273

C3 X X X X X X X X X X X X 0.9637 0.9129 0.9376

C4 X X X X X X X X X 0.9672 0.8925 0.9284

C5 X X X X X X X X X X X X X 0.9642 0.9126 0.9377

C6 X X X X X X X X 0.9667 0.8944 0.9292

C7 X X X X X X X X X 0.9671 0.8940 0.9291

C8 X X X X X X X X X X X X X X 0.9634 0.9135 0.9377

C9 X X X X X X X X X X 0.9669 0.8922 0.9280

C10 X X X X X X X X 0.9672 0.8907 0.9274

C11 X X X X X X 0.9676 0.8870 0.9256

C12 X X X X X X X X X X X X 0.9634 0.9127 0.9374

C13 X X X X X X X X X X X 0.9642 0.9125 0.9376

C14 X X X X X X X X X X X X X 0.9632 0.9134 0.9377

C15 X X X X X X X 0.9674 0.8887 0.9264

C16 X X X X X X X X X X X X 0.9625 0.9132 0.9372

C17 X X X X X X X 0.9672 0.8896 0.9268

C18 X X X X X X X X X X X 0.9642 0.9121 0.9374

Notations carry the meanings as defined for the JNLPBA datasets

used a semi-supervised learning technique. The system that
performed second highest for gene mention detection in
BioCreative-II challenge is by Cheng-Ju Kuo and I-Fang
Chung (Smith et al. 2014; Kuo et al. 2007). This system is
termed as AIIAGMT, and is based on CRF. The system uses
a rich feature set, unification of bidirectional parsing mod-
els, a dictionary-based filtering post-processing module. It

demonstrated the final recall, precision and F-measure val-
ues of 89.30, 84.49 and 86.83 %, respectively. The third-
ranked system of BioCreative-II challenge was developed
by Chun-Nan Hsu and Yu-Shi Lin (Smith et al. 2014; Huang
et al. 2007). They reported a combined model consisting of
two SVMs and one CRF. The improved performance of this
system proves that combiningmultiple complementarymod-
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Table 7 Evaluation results with various feature combinations for the CRF-based classifiers for AIMed

Cl A B C D E F G H I J K L M N O P Q R S T U

C1 −1, 1 X X X X X X X X X X X 0 3 X X X X

C2 −1, 1 X X X X X X X X 2 4 X X X

C3 −1, 1 X X X X X X X 1 2 X X X X

C4 −1, 1 X X X X X X X X X X 1 3 X X X X X

C5 −1, 1 X X X X X X X 1 2 X X X

C6 −1, 1 X X X X X X X 1 4 X X X

C7 −1, 1 X X X X X X X 1 3 X X X X X

C8 −1, 1 X X X X X X 1 3 X X X

C9 −1, 1 X X X X X 1 4 X X X X

C10 −1, 4 X X X X X X X 2 1 X X X X

C11 −1, 1 X X X X X 1 2 X X

C12 −1, 1 X X X X X X X X X 2 4 X X X X

C13 −1, 1 X X X X X X X X 1 3 X X X X X

C14 −1, 1 X X X X X X X 1 3 X X X X X

C15 −1, 1 X X X X X X 0 2 X X X

C16 −1, 1 1 X X X X X X X 1 2 X X X

C17 −1, 1 X X X X X X 1 3 X X X

C18 −1, 1 X X X X X X 1 1 X X

Cl V W x Y Z a b c d e f g h i j k l p r F

C1 X X X X X X X X X X 0.9127 0.8982 0.9054

C2 X X X X X X X X X X 0.9135 0.8975 0.9055

C3 X X X X X X X X X X X X X X X 0.9144 0.8969 0.9056

C4 X X X X X X X X 0.9144 0.8953 0.9048

C5 X X X X X X X X X X X 0.9127 0.8975 0.9050

C6 X X X X X X X X X X 0.9135 0.8968 0.9051

C7 X X X X X X X X X 0.9135 0.8960 0.9047

C8 X X X X X X X X X X X X 0.9118 0.8974 0.9045

C9 X X X X X X X X X X X X 0.9144 0.8945 0.9044

C10 X X X X X X X X 0.9144 0.8883 0.9012

C11 X X X X X X X X X X X X 0.9135 0.8944 0.9039

C12 X X X X X X X X X X X 0.9118 0.8966 0.9041

C13 X X X X X X X X 0.9109 0.8965 0.9036

C14 X X X X X X X X X X 0.9135 0.8936 0.9035

C15 X X X X X X X X X 0.9100 0.8964 0.9031

C16 X X X X X X X X X X X X X X 0.9135 0.8929 0.9031

C17 X X X X X X X 0.9135 0.8898 0.9015

C18 X X X X X X X X X X X 0.9135 0.8882 0.9007

Here, the notations carry the same meanings as that of GENETAG and JNLPBA

els always improves the performance. The organizers of the
competition showed (Smith et al. 2014) that a combination
of all the submitted systems can achieve an F-measure of
90.66 %.

In Li et al. (2012), authors used a classifier ensemble
framework to improve the tagging performance. Based on
CRF, SVM and ME, they generated six classifiers by vary-
ing the feature sets. Finally, these classifiers were combined

using a stack-based ensemble. This system achieved the final
F-measure value of 88.42 % which is better than the highest
performing system of BioCreative-II challenge. This is also
less compared to our proposed system. In another system by
Li et al. (2010), SVM is used along with a reformed lexicon
for gene mention detection. Authors have used an ensem-
ble of rule-based post-processing modules, a integrity check
module, a boundary check module, an abbreviation resolu-
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Table 8 Overall results of the proposed techniques and the baselines

ME JNLPBA04 GENETAG AIMed

r p F r p F r p F

BIC 73.05 77.62 75.26 91.34 96.32 93.77 89.69 91.44 90.56

B1 71.46 75.73 73.53 81.97 96.17 88.51 88.02 90.09 89.04

B2 73.00 77.76 75.30 88.76 95.69 92.10 89.35 91.27 90.30

B3 73.08 77.81 75.37 90.06 95.55 91.73 89.44 91.35 90.39

TA 75.03 78.54 76.75 92.08 96.32 94.15 91.47 92.35 91.91

Here ‘r’: recall, ‘p’: precision, ‘F’: F-measure, ME: method, BIC: best individual classifier obtained through feature selection, B1: Baseline-1, B2:
Baseline-2, B3: Baseline-3, TA: proposed two-stage approach

Table 9 Estimatedmarginalmeans and pairwise comparisons between the proposed approach (multiobjective differential evolution-based approach)
and several other techniques for JNLPBA 2004 dataset

Evaluation criterion Technique (I) Technique (J) Mean diff. (I − J) Significance value

F-measure MODE based approach Individual classifier 0.49 ± 0.013 1.1623e−009

F-measure MODE based approach Baseline 1 1.22 ± 0.014 3.3990e−009

F-measure MODE based approach Baseline 2 0.45 ± 0.011 8.6386e−010

F-measure MODE based approach Baseline 3 0.38 ± 0.009 5.5376e−010

Table 10 Estimated marginal means and pairwise comparisons between the proposed approach (multiobjective differential evolution-based
approach) and several other techniques for GENETAG dataset

Evaluation criterion Technique (I) Technique (J) Mean diff. (I − J) Significance value

F-measure MODE based approach Individual classifier 0.38 ± 0.016 1.1762e−009

F-measure MODE based approach Baseline 1 5.64 ± 0.011 4.5760e−010

F-measure MODE based approach Baseline 2 2.05 ± 0.019 6.8783e−010

F-measure MODE based approach Baseline 3 2.42 ± 0.007 2.3544e−009

Table 11 Estimated marginal means and pairwise comparisons between the proposed approach (multiobjective differential evolution-based
approach) and several other techniques for AIMed dataset

Evaluation criterion Technique (I) Technique (J) Mean diff. (I − J ) Significance value

F-measure MODE based approach Individual classifier 1.35 ± 0.014 7.4831e−010

F-measure MODE based approach Baseline 1 2.87 ± 0.015 1.6643e−009

F-measure MODE based approach Baseline 2 1.61 ± 0.014 3.6215e−009

F-measure MODE based approach Baseline 3 1.52 ± 0.009 1.5372e−009

tion module and a name pruning module, to improve the
performance further. The lexicon is made of uni-indicating
and co-indicating words inside gene mention phrases. The
system achieved the recall, precision and F-measure values
of 85.66, 90.67 and 88.09 %, respectively. The comparative
evaluation results are reported in Table 13.

Our current approach attains very high accuracy compared
to the other existing systems for the GENETAG datasets.
Comparisons suggest that our system achieves state-of-the-
art performance with only three domain-dependent features,
namely PoS, chunk (or, phrase) and an external NE extrac-
tor. We systematically analyze the contribution of each fea-

ture, and it reveals the fact that huge performance gain is
achieved with the PoS information which was provided with
the dataset.

It is to be noted that in the GENETAG training and test
datasets, PoS information were provided only for the non-
gene proteins. We pre-processed this data and assigned the
PoS class,NNP, i.e., proper noun to each of these gene tokens.
This PoS information actually plays a crucial role in the over-
all system performance. Another reason is that we used our
in-house NE extractor for obtaining the class label informa-
tion of the test set while extracting the feature that exploits
global contextual information.
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Table 12 Comparison with the existing approaches for JNLPBA 2004 shared task dataset

System Used approach Domain knowledge/resources FM

Our proposed system DE based approach
(CRF)

POS, phrase 76.75

Wang et al. (2008) classifier ensemble
(general windows,
ME, CRF and SVM)

POS, phrase, common gazetteer, species names,
chemical name endings, mineral names

77.57

GuoDong and Jian (2004) Final HMM, SVM Name alias, cascaded NEs dictionary, POS,
phrase

72.55

Kim et al. (2005) Two-phase model with
ME and CRF

POS, phrase, rule-based component 71.19

Finkel et al. (2004) CRF Gazetteers, web-querying, surrounding abstracts,
abbreviation handling, BNC corpus, POS

70.06

Settles (2004) ME POS, semantic knowledge sources of 17 lexicons 70.00

Saha et al. (2009) ME POS, phrase 67.41

Park et al. (2004) ME POS, phrase, domain-salient words using WSJ,
morphological patterns, collocations from
Medline

66.91

Song et al. (2004) Final SVM, CRF POS, phrase, Virtual sample 66.28

Song et al. (2004) Base SVM POS, phrase 63.85

Ponomareva et al. (2007) HMM POS 65.7

Table 13 Comparison with the existing approaches for GENETAG dataset

System Used approach Domain knowledge/resources FM

Our proposed system DE-based approach
(CRF and SVM)

POS, phrase 94.15

BiocreativeCombineScore
(Smith et al. 2014)

– – 90.66

Ando (2007)
ASO Semi-supervised
approach

POS, word, character types, etc. 87.2

Cheng-Ju Kuo and I-Fang
Chung (Smith et al. 2014;
Kuo et al. 2007)

CRF morphological features 86.83

Chun-Nan Hsu and Yu-Shi
Lin (Smith et al. 2014;
Huang et al. 2007)

SVM, CRF POS 86.57

Li et al. (2012)
Hybrid method stack based
method

POS, morphological,
domain-specific features

88.42

Li et al. (2010)
classifer ensemble method
SVM, ME and CRF

POS, morphological features 88.09

The proposed algorithm also shows encouraging perfor-
mance for the AIMed datasets. To extract the feature that
takes into account the global contextual information we used
our in-house implementation of a NE extractor. Evaluation
on three benchmark datasets that were created following
the different annotation guidelines shows that our system
achieves quite encouraging performance for all the domains,
and therefore this not very domain specific.

Note that results show that our baseline approaches per-
form better than the state-of-the-art techniques for all the
three data sets. This is due to the development of rich feature
set. We have developed many new features like head noun,

verb trigger and informative word feature. The use of these
features help the baseline models to achieve state-of-the-art
accuracy.

8 Conclusion

In this paper, we have proposed multiobjective differen-
tial evolution-based feature selection and classifier ensem-
ble technique. In the first stage, we developed a MOO-
based feature selection technique for a well-known super-
vised machine learning algorithm, namely CRF. It is used to
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determine the relevant set of features for three benchmark
datasets in the biomedical domains. We implemented a very
rich feature set that itself can achieve very high accuracy.
The features were derived without using any deep domain
knowledge and/or external resources. The final output of the
first stage produces a set of solutions on the Pareto optimal
front. Each solution in the Pareto front denotes a particular
feature combination. We generated various classifiers based
on these feature subsets. Among these, we select some of the
promising solutions based on the good recall and precision
values. These classifiers are thereafter combined into a single
model by a MOO-based ensemble technique. Experiments
show the F-measure values of 76.75, 94.15 and 91.91 % for
JNLPBA 2004 shared task, GENETAG and AIMed datasets,
respectively. Detailed comparisons show that our proposed
approach performs favorably better compared to the existing
state-of-the-art systems that were developed using the same
datasets.

In future, we plan to determine the most relevant parame-
ters of classifiers using multiobjective DE-based technique.
We would also like to study the effects of our algorithm on
the other datasets. Automatically determining the best one
from a pool of classifiers for solving the entity extraction
problem in biomedical domain is another important research
direction. Selecting the appropriate parameter configurations
of DE is another optimization problem.
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